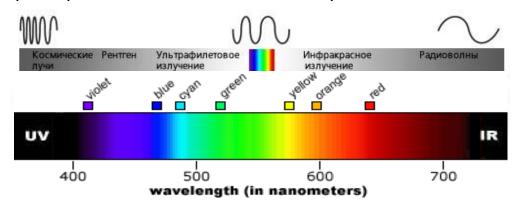
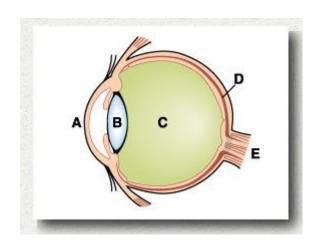


Computing Mathematics and Cybernetics faculty
Software department

CS255. Computer Graphics Introduction Course


Теория цвета


Цветовые модели

Турлапов, Вадим Евгеньевич проф. каф. МО ЭВМ, ВМК, ННГУ

Восприятие цвета человеком

Область электромагнитного спектра, видимая человеческим глазом, занимает диапазон примерно от 400 до 700 нанометров (10⁻⁹м).

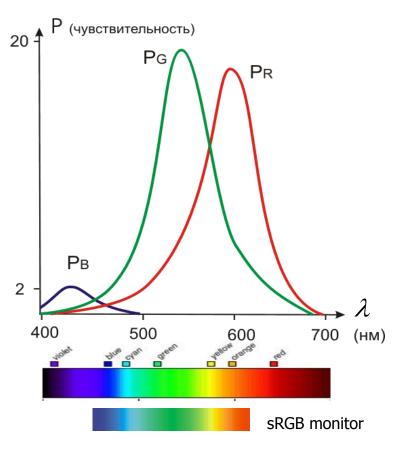
А: роговая оболочка глаза

В: хрусталик

С: стекловидное тело

D: сетчатка

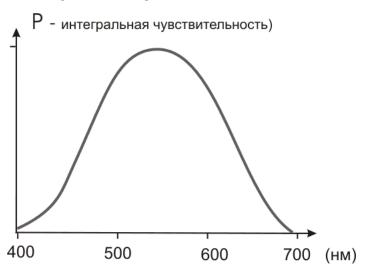
Е: оптический нерв


Палочки (rods): 75-150 млн

Колбочки (cones): 6-7 млн, в ямке (fovea), - воспринимают цвет. К каждой - свой нерв.

Восприятие цвета человеком

Чувствительность трех типов колбочек к разным участкам спектра:


$$R = \int I(\lambda) \cdot P_R(\lambda) d\lambda$$

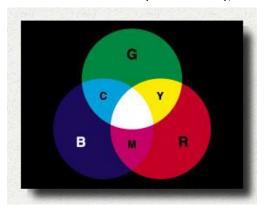
$$G = \int I(\lambda) \cdot P_G(\lambda) d\lambda$$

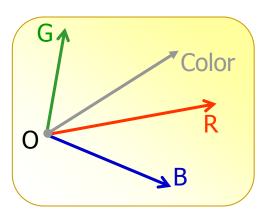
$$B = \int I(\lambda) \cdot P_B(\lambda) d\lambda$$
(1)

 $I(\lambda)$ - зависимость интенсивности света от длины волны


Интегральная чувствительность глаза к свету:

Восприятие цвета человеком


Источники света и объекты:

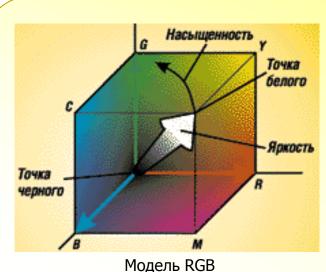


Аддитивная модель

М. В. Ломоносов 1756

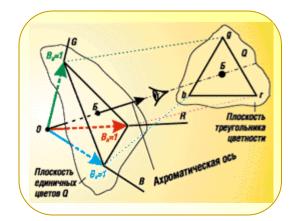
Опыт Томаса Юнга (1773-1829),1807

Законы Германа Грассмана (аддитивного синтеза света):


- **1.Закон трехмерности:** Любой цвет однозначно выражается тремя, если они линейно независимы. Линейная независимость заключается в том, что ни один из этих трех цветов нельзя получить сложением двух остальных.
- **2.Закон непрерывности**: При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.
- **3.Закон аддитивности:** Цвет смеси излучений зависит только от компонентов их цвета, а не от спектрального состава. Как следствие аддитивность цветовых уравнений: для смеси двух цветов C_1 и C_2 имеет место равенство:

$$C=C_1+C_2=(r_1+r_2)R+(g_1+g_2)G+(b_1+b_2)B$$
 (2)

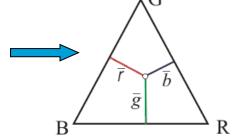
<u>Grassmann's Laws</u> formed the theoretical framework for color experiments by Helmholtz and <u>James Clerk Maxwell</u> in the 1850's. These established the <u>trichromatic model</u> of color mixture, and the modern study of color began.



Аддитивная модель RGB

<u>Плоскость нормированного цвета и треугольник Максвелла:</u>

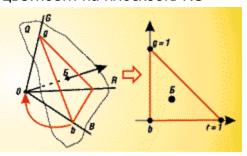
(3)

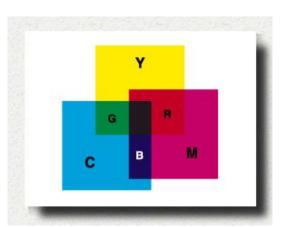

$$\bar{r} = \frac{r}{r + g + b}$$

$$\overline{g} = \frac{g}{r + g + b}$$

$$\overline{b} = \frac{b}{r + g + b}$$

$$\overline{r} + \overline{g} + \overline{b} = 1$$




$$\lambda_R = 630$$
нм, $\lambda_G = 528$ нм, $\lambda_B = 457$ нм

Проецирование треугольника цветности на плоскость RG

Субтрактивная модель СМҮК

Модель для полиграфии (т.к. печать на бумаге создается поглощением цветов):

$$C = I - R$$

$$M = I - G$$

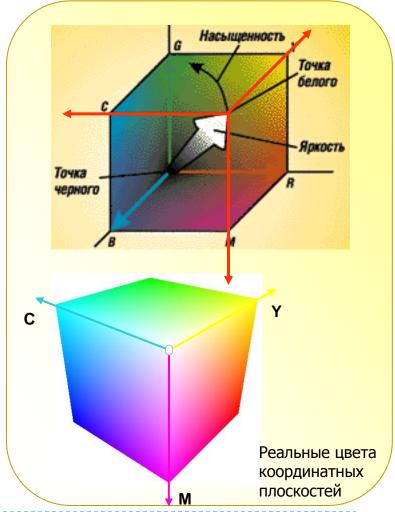
$$Y = I - B$$
(4)

Кеу – черный цвет, ключевой в полиграфии -> модель СМҮК

Переход от СМУ κ СМУК(%):

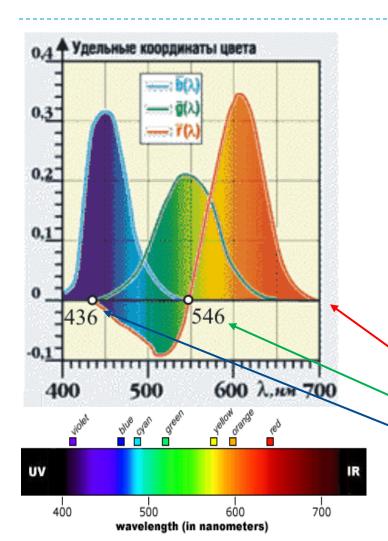
K>0, при $\max(R,G,B) < 0.66$

K = min(C,M,Y);


$$C \sim C - K \tag{5}$$

 $M \sim M - K$

$$Y \sim Y - K$$


black=100%K+100%C+100%M+100%Y

Система координат СМҮ (красным):

Разложение монохромного цвета

$$mono(\lambda) = r(\lambda)R + g(\lambda)G + b(\lambda)B$$
 (6)

Некоторые монохромные цвета раскладываются по RGB с отрицательными коэффициентами -> не все возможные цвета представимы в рамках модели RGB.

В 1931 году длины волн, соответствующие R,G и B, определены стандартом CIE (Commission International de l'Eclairage - Межд. комиссия по стандартам освещенности, МКО):

$$\lambda_R = 700 \text{ nm},$$

$$\lambda_G = 546.1 \text{ nm},$$

$$\lambda_R = 435.8 \text{ nm}$$

Модели CIE. Модель XYZ

$$X = \int I(\lambda) \cdot \overline{x}(\lambda) d\lambda$$
$$Y = \int I(\lambda) \cdot \overline{y}(\lambda) d\lambda$$
$$Z = \int I(\lambda) \cdot \overline{z}(\lambda) d\lambda$$

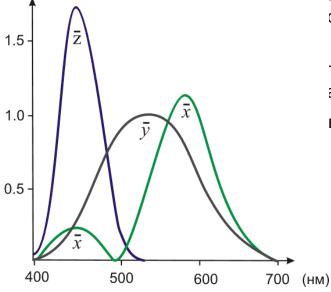


Рис. Стандартные кривые для идеального наблюдателя CIE

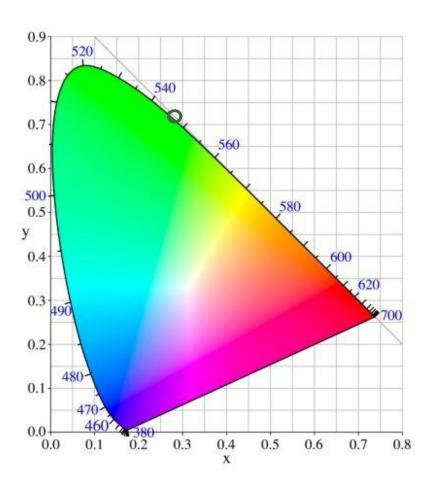
В 1931 был принят стандарт CIE (Commission International de l'Eclairage - Международная комиссия по освещению), в качестве основы которого были выбраны **три перенасыщенных цвета ХҮZ**, не соответствующих никаким реальным, но все реальные могут быть представлены их комбинациями с положительными коэффициентами. Введено онятие «стандартного наблюдателя».

– выражает интенсивность света [Вт/м²] с учетом тектральной чувствительности глаза стандартного аблюдателя и называется **люминантностью** (CIE luminance).

ведены также нормированные координаты x,y,z:

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z} \qquad z = \frac{Z}{X + Y + Z} \qquad x + y + z = 1$$

Обратное преобразование:

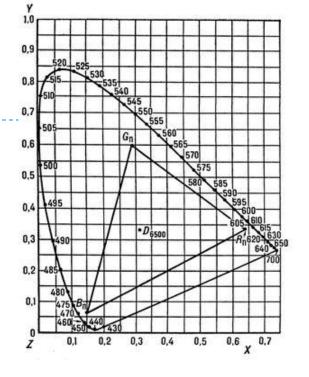

$$X = x \frac{Y}{y}; \quad Y = Y;$$

$$Z = (1 - x - y) \frac{Y}{y}.$$
(7)

На основе двух координат x и y введена плоская хроматическая СІЕ-диаграмма, которая вместе с Y позволяет полностью восстановить перенасыщенные цвета XYZ.

Хроматическая CIE-диаграмма


- Комиссия решила ориентировать треугольник *ху* таким образом, что равные количества перенасыщенных основных цветов XYZ давали в сумме белый. Диаграмма представляет собой видимое множество цветов. На контуре проставляют значения длин волн в нм, соответствующие чистым, неразбавленным цветам. В центре области находится опорный белый цвет точка равных энергий, с координатами x=y=0.33(3).
- ▶Система (x, y, Y) подчиняется законам Грассмана. Наибольшую площадь занимают цвета с преобладанием зеленого.

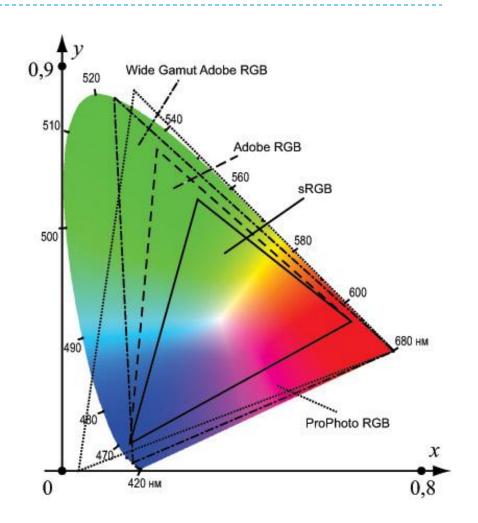

Некоторые стандартные источники СІЕ:

Название	Температура	х	У
Лампа с вольфрамовой нитью накаливания	2856K	0.448	0.408
Солнечный свет в полдень	5600K	0.349	0.352
Полуденное освещение при сплошной облачности	6300K	0.310	0.316
Опорный белый стандарт для мониторов и NTSC	6400K	0.313	0.329

Хроматическая СІЕ-диаграмма и цветовой охват

В таблице приведены основные цвета (R, G, B) моделей в координатах цветового графика СІЕ:

Модель, стандарт	Цвет	x	у
CIE XYZ	Красный	0.735	0.265
	Зеленый	0.274	0.717
	Синий	0.167	0.009
Стандарт NTSC	Красный	0.670	0.330
	Зеленый	0.210	0.710
	Синий	0.140	0.080
Цветной монитор	Красный	0.628	0.346
	Зеленый	0.268	0.588
	Синий	0.150	0.070



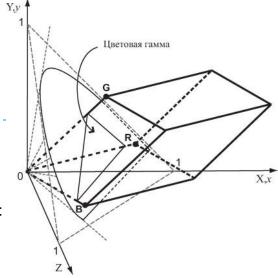
СІЕ-диаграмма и цветовой охват

На цветовом графике CIE удобно демонстрировать цветовой охват различных систем и оборудования: телевидения, типографской печати, фотопленок и т.п.

Цветовой охват для аддитивных систем - треугольник с вершинами, соответствующими основным цветам RGB. Цвет, который можно получить в данной цветовой модели лежит внутри треугольника; цвета, лежащие вне - получить невозможно.

Для цветной пленки, охват есть криволинейный треугольник. Причина этого заключается в нелинейном (в данном случае логарифмическом) законе создания цветного изображения с помощью цветной пленки.

ХҮZ как основа аппаратнонезависимого преобразования моделей



Их необходимо знать для преобразования координат СІЕ в другие цветовые модели и обратно. Например, **преобразование RGB - CIE XYZ** задается следующей формулой:

Независимого преооразования моделей рординаты цветности СІЕ представляют точный стандарт определения цвета.

с необходимо знать для преобразования координат СІЕ в другие цветовые модели обратно. Например, **преобразование RGB - CIE XYZ** задается следующей формулой:

$$\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
X_r & X_g & X_b \\
Y_r & Y_g & Y_b \\
Z & Z & Z
\end{bmatrix} \begin{bmatrix}
R \\
G \\
R
\end{bmatrix}$$
(8)

, где X_r, Y_r, Z_r - цвета для получения координат единичного основного цвета R, аналогично и для G и В. Если известны координаты цветности СІЕ x и y для основных цветов RGB, то:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x_r C_r & x_g C_g & x_b C_b \\ y_r C_r & y_g C_g & y_b C_b \\ (1 - x_r - y_r) C_r & (1 - x_g - y_g) C_g & (1 - x_b - y_b) C_b \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
(9)

, где
$$C_g = X_g + Y_g + Z_g$$
 , $C_b = X_b + Y_b + Z_b$, $C_r = X_r + Y_r + Z_r$

Преобразования XYZ - RGB

Матрица преобразования зависит, таким образом, от стандарта, определяющего хроматические координаты x, y для цветов r, g, b. Ниже даны матрицы преобразования для рекомендации СІЕ 709:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 3.240479 & -1.537156 & -0.498536 \\ -0.969256 & 1.875992 & 0.041556 \\ 0.055648 & -0.204043 & 1.057311 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
 XYZ B RGB (11)

Если какой-либо цвет не может быть представлен в RGB, то у него хотя бы одна из координат будет меньше 0 или больше 1.

Задача: вычислить r, g, b компоненты белого цвета, заданного в (10) и таблице слайда 11.

Примеры преобразований

В формате JPEG применяется модель YIQ телевизионного стандарта NTSC (USA). В канале Y яркость подобрана так, что она также близка к цветовой чувствительности глаза. Канал I соответствует цветам от голубого до оранжевого (теплым тонам). Канал Q - от зеленого до пурпурного. В качестве опорного белого был взят источник с температурой 6500К. Преобразования между цветовыми системами RGB и YIQ:

RGB B YIQ (13):

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.522 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} \qquad \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0.956 & 0.623 \\ 1 & -0.272 & -0.648 \\ 1 & -1.105 & 0.705 \end{bmatrix} \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

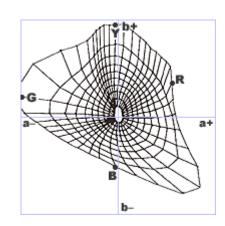
YIQ в RGB (14):

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0.956 & 0.623 \\ 1 & -0.272 & -0.648 \\ 1 & -1.105 & 0.705 \end{bmatrix} \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

Таким образом, яркость или интенсивность света, с учетом чувствительности глаза, может быть определена по формуле:

$$Y_{\text{NTSC}} = 0.299R + 0.587G + 0.114B$$

 Y_{NTSC} =0.299R+0.587G+0.114B (15) // популярна в компьютерной графике.

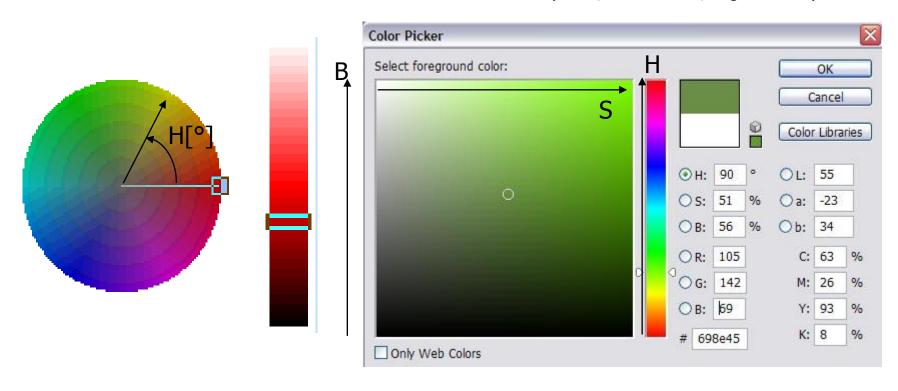


Другие модели: модель L*a*b* (Lab)

История L*a*b* (и Lab) **по Wikipedia** (<u>local</u>). Модель рекомендована для линеаризации представления отраженного света.

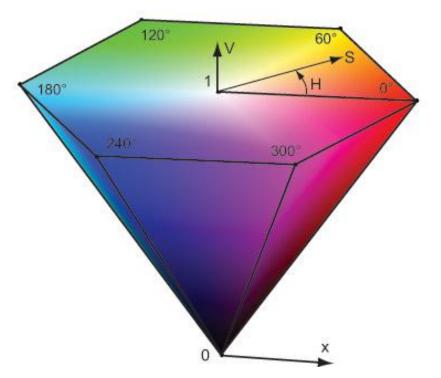
 $L^*a^*b^*$ — линеаризованная и приведенная модель XYZ (16). Создана в 1976 году. Ось **а** проходит от зеленого (-**a**) до красного (+**a**), а ось **b** - от синего (-**b**) до желтого (+**b**). Яркость (**L**) возрастает снизу вверх вдоль диагонали RGB-куба. По сравнению с цветовой моделью XYZ цвета CIE $L^*a^*b^*$ более совместимы с цветами, воспринимаемыми человеческим глазом. В модели CIE $L^*a^*b^*$ яркость (L), цветовой тон и насыщенность (a, b) могут рассматриваться раздельно. В результате цвет изображения можно изменять без изменения самого изображения или его яркости. Поскольку CIE $L^*a^*b^*$ не зависит от устройства, то, при переходе от RGB к CMYK или от CMYK к RGB, полезно во избежание потерь использовать модель CIE $L^*a^*b^*$ в качестве промежуточной.

$$L^* = egin{cases} 116(Y/Y_n)^{1/3} - 16, & Y/Y_n > 0.008856 \\ 903.3(Y/Y_n), & Y/Y_n \leq 0.008856 \end{cases}$$
 $a^* = 500ig[(X/X_n)^{1/3} - (Y/Y_n)^{1/3}ig] \\ b^* = 200ig[(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}ig] \end{cases}$ (16)

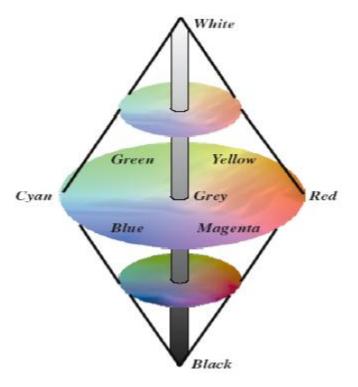

См. также: 1)модель $L^*u^*v^*$ (рекомендована для линеаризации представления света от источников) в кн. Д.В.Иванова

2)Дэн Маргулис. Photoshop LAB Color. Загадка каньона и другие приключения в самом мощном цветовом пространстве - М:. Интелбук, 2006. -481с. (55МВ). и др.

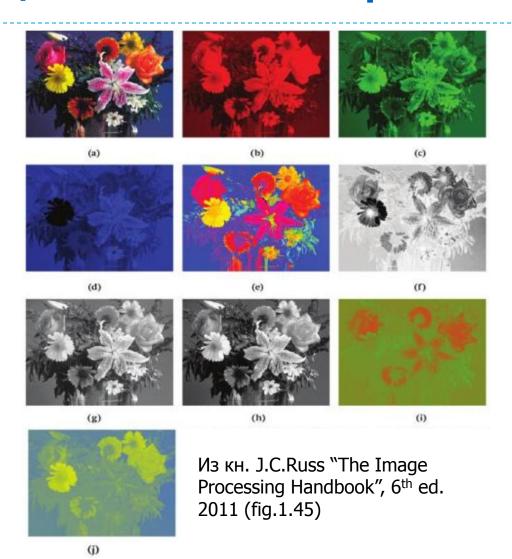
Другие модели: HSB, HLS...


HSB — (Hue-°, Saturation-%, Brightness -%)

Пример прикладного интерфейса выбора цвета на основе модели HSB в системах компьютерной графики (Adobe Photoshop)


Другие модели HIS\HSV: Hue –Saturation –Intensity (Volume)

Цветовой тон (Н) измеряется углом вокруг вертикальной оси, причем красному, зеленому и синему цветам соответствует Н = 0, 120 и 240 градусов. Интенсивность (V) вдоль оси возрастает от 0 в вершине до 1 на верхней грани, где она максимальна для всех цветов. Насыщенность (S) определяется расстоянием от оси. На вертикальной оси находятся ахроматические, серые цвета.


Другие модели HLS: Hue-Lightness-Saturation

Цветовая модель HLS (Hue, Lightness, Saturation) в виде двойной шестигранной пирамиды является расширением одиночной пирамиды HSV.

Пример разложения изображения по цветовым каналам различных моделей

Original (a) and

- (b) red channel;
- (c) green channel;
- (d) blue channel;
- (e) hue channel;
- (f) saturation channel;
- (g) intensity channel;
- (h) L channel;
- (i) a channel;
- (j) b channel

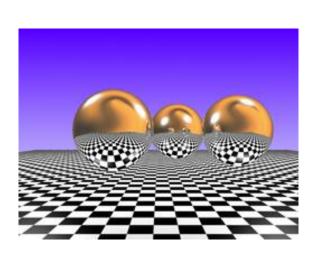
Гамма-коррекция. Глубина цвета

Gamma-коррекция интенсивности и цвета:

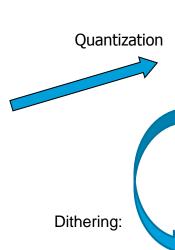
Y ∼ U^{Gamma}

Глубина цвета:

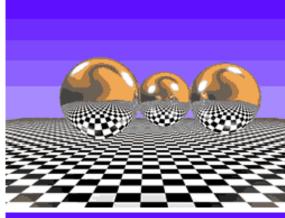
- ▶Черно-белое изображение (монохромное) 1 bit/pix
- ▶Полутоновое (256 оттенков серого) 8 bit/pix
- ▶Полноцветные изображения (High Color, True Color) до 24 (3x8) 32 (4x8) bit/pix
- ▶Индексированный цвет (палитровое) 8 bit/pix:

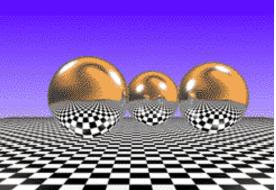

0	000000	
1	FF0000	
2	00FF00	
3	0000FF	
4	FFFFFF	
5	FFFF00	
6	FFOOFF	
7	OOFFFF	
8	FF0080	
9	FF8040	
A	804000	
В	008080	
C	800000	
D	800080	
E	8080 FF	

- ▶16 bit/chan в камерах.
- ▶Проблема HDR (High Dynamic Range): до 32 bit/chan



Квантование цвета. Дизеринг


Quantization of color. Dithering


RGB

Creation of needed colors by mixing of nearest pixel colors

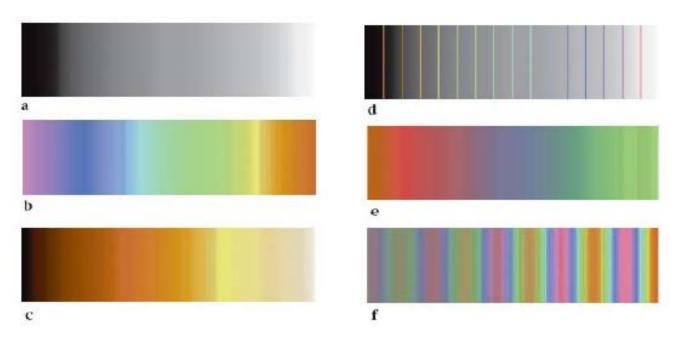
ed of ors

16 colors

Графические форматы. Форматы в Windows, GDI и GDI+

Распространенные форматы файлов растровой графики

Формат	Макс. число бит/ пиксел	Макс. число цветов	Макс. размер изображения, пиксел	Методы сжатия	Кодирование нескольких изображений
BMP	24	16'777'216	65535 x 65535	RLE*	-
GIF	8	256	65'535 x 65535	LZW	? +
JРЕG	24	16'777'216	65535 x 65535	JPEG	-
PCX	24	16'777'216	65535 x 65535	RLE	-
PNG	48	281'474'976'710'656	2'147'483'647 x 2 147 483 647	Deflation (вариант LZ77)	-
TIFF	24	16'777'216	всего 4'294'967'295	LZW, RLE и другие*	+

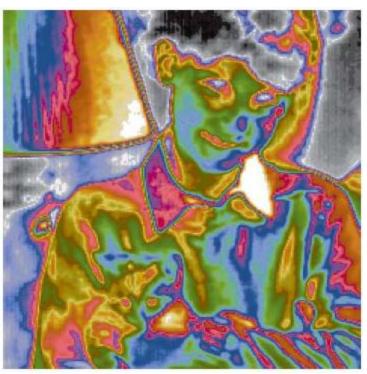

^{*} Сжатие выполняется факультативно.

Справка по форматам GDI+

Raw-форматы

Индексированный цвет. Примеры палитр

6 примеров представления палитр (look-up tables, LUTs): (a) monochrome(grey-scale); (b) спектральная радуга (variation of hue, with maximum saturation and constant intensity); (c) горячая шкала (heat scale); (d)monochrome with contour lines(rainbow colors substituted every16th value); (e) плавное смешивание трех основных цветов; f) синусоидальное изменение оттенка с линейным изменением насыщенности и интенсивности.



Задачи:

Индексированный цвет. Псевдоцвета

(замена палитр: полутоновое ← → индексированное)

Задачи:

Полный цвет. Перенос цветовой палитры

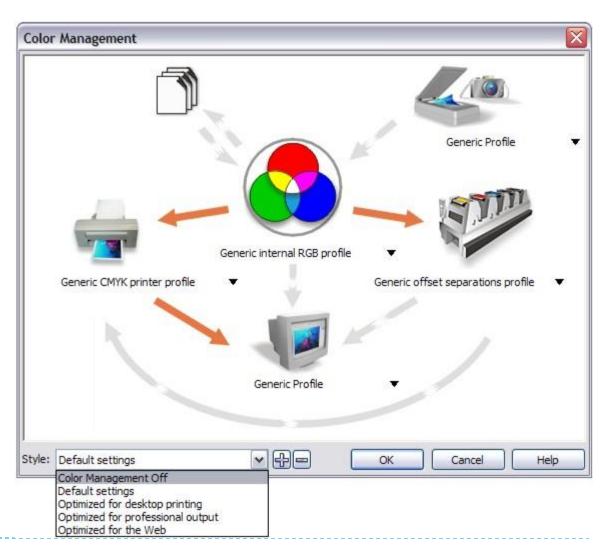
Задачи:

Разделение цвета в модели HIS

Original and

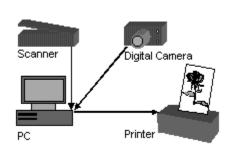
- (e) hue component;
- (f) intensity component;
- (g) saturation component

Система управления цветом (Image Color Management). Пример Corel PhotoPaint


Как соответствуют друг другу

- -Видимый глазом свет
- –Цвет на мониторе / проекторе
- –Цвет на фотографии
- -Цвет в графическом редакторе
- -Цвет объектов в OpenGL?

Источники влияния:


- -Печать
- –Проектор
- -Формат файла
- -Видеокарта

-..

Система управления цветом (Image Color Management, ICM 2.0)

<u>Профиль монитора</u> – колориметр (спектрофотометр), снимающий образцы цветов [см. также 2,6]. sRGB – усредненный профиль. <u>Профиль сканера</u> – стандартный эталон IT-8

Профиль принтера

Печатается эталон IT-873. Цвета на нем измеряются, для данного режима печати и бумаги, с помощью прибора денситометра и передаются в программу вычисляющую цветовой профиль.

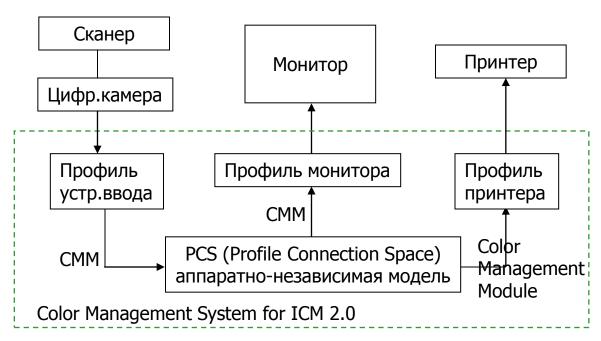


Image Color Management, ICM 2.0 ICC Profile Format Specification, available from the International Color Consortium (1993) http://www.color.org.

Понятия калибровки, идентификации, профиля.

Значение в полиграфии.

Расширение возможностей многоцветной печати.

Источники

- 1. http://graphics.sc.msu.su/courses/ курсы "Введение в компьютерную графику" Баяковского Ю.М. и Шикина Е.В. для ф-та ВМиК МГУ, материалы лаборатории Graphics & Media Lab при МГУ, в т.ч. http://graphics.cs.msu.su/courses/cg/assigns/2005/hw2/index.html http://graphics.cs.msu.su/courses/cg99/notes/lect5/notes05.htm ...
- Иванов Д.В., Карпов А.С., Кузьмин Е.П., Лемпицкий В.С., Хропов А.А, Алгоритмические основы растровой машинной графики. БИНОМ. Лаборатория знаний, - ИНТУИТ.ру, 2007.
- 3. Bruce MacEvoy. Color vision. 2005 (http://www.handprint.com/HP/WCL/color1.html, local)
- 4. Порев В.Н. Компьютерная графика. –СПб.: БХВ-Петербург, 2002. –432с.
- 5. Шикин Е.В., Боресков А.В. Компьютерная графика. Полигональные модели. –М.: ДИАЛОГ-МИФИ, 2001.-464с.
- 6. Color & Shading (from Linda Shapiro George Stockman "Computer Vision") (pdf, 1.23MB, eng. http://graphics.cs.msu.su/courses/cg01b/ch6.pdf)
- 7. Дэн Маргулис. Photoshop LAB Color. Загадка каньона и другие приключения в самом мощном цветовом пространстве М:. Интелбук, 2006. -481c.(PDF, 55MB)
- 8. John C. Russ. Image Processing. Handbook / 6th ed., 2011, :Taylor & Francis Group, LLC. -869 pp.
- 9. Хилл Ф. OpenGL. Программирование компьютерной графики. С.Пб: Питер, 2002. 1088с. (F.S.Hill, Computer Graphics Using OpenGL, Prentice Hall, 2001, 1088 pages)
- 10. Image Analysis Cookbook 6.0. http://www.reindeergraphics.com/foveaprotutorial.html

